AD/A-005 826
A PHONOLOGICAL RULES SYSTEM
J. &. Barnett

System Development Corporation

Prepared for:

Advanced Research Projects Agency

24 January 1975

DISTRIBUTED BY:

NS

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE




UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered) @ ﬁﬁ@ﬁ gzé
Y READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE SEBORE CTREL BTG PORS
[1. REPORT NUMBER 2. GOVT ACCESSION NO| 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitte) S. TYPE OF REPORT & PERIOD COVERED

Technical - 1974
A PHONOLOGICAL RULES SYSTEM

6. PERFORMING ORG. REPORT NUMBER
TM-5478/000/00

7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(s)
Barnett, J. A. DAHC15~73-C-0080
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

\ AREA & WORK UNIT NUMBERS
System Development Corporation

2500 Colorado Avenue
Santa Monica, California 90406 Program Code 5D30
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
24 January 1975
13. NUMBER OF PAGES

50
T4. MONITORING AGENCY NAME & ADDRESS(/! different from Controlling Ottice) | 15. SECURITY CLASS. (of thie report)

Advanced Research Projects Agency Unclassified
1400 Wilson Boulevard .
Arlington, Virginia 22209 1Se, ?gSé.DA'S ATION/ COWNGRADING

16. DISTRIBUTION STATEMENT (of thls Report)

Cleared for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetrect entered in Block 20, i ditferent froin Report)

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commarce
Springfield, VA. 22151

‘8. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveres eide if neceeeary and identily by block number)

automatic speech processing
LISP extensions

20. ABSTRACT (Continue on reveree side If neceeeery and identily by block number)

0

.-

]
DD ,5an'7s 1473  eoiTion oF 1 nov es s ossoLeTE |, UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)




e

TM-547¢/000/00

A PHONOLOGICAL RULES SYSTEM

J. A. BARNETT

24 JANUARY 1975

THIS REPORT WAS PROOUCED BY SDC I« PERFDRMANCE DF CONTRACT 1 8

ND. DAHC15-73-C-0080, ARPA ORDER NO. 2254, PRDGRAM CDODE NO.
SD30.

THE VIEWS AND CONCLUSIDNS CDNTAINED HEREIN ARE THDSE DF THE
AUTHOR AND SHOULD NDT BE INTERPRETED AS NECESSARILY REPRE-
SENTING THE OFFICIAL POLICIES EITHER EXPRESSED DR IMPLIED OF
THE ADVANCED RESEARCH PRDJECTS AGENCY DR THE U.S. GOVERNMENT.

, u“u
e X 4

o AT Tl LT Ol i -

119%

System Development Corporation
2500 Colorado Avenue » Santa Monica, California 904(‘.)_5

T———

e

e G s S R G s i R ik i




24 January 1975 System Development Corporation

=i= "H-5478/000/00

IABLE OF CONTENTS

1. INTRODUCTION ® 0 8 8 08T SO TGOS OO T T ST CE TS SO S COS OO GOOE RS

w

2. PHONES AND THEIR PEATURES .ccceveccccccsscsacscsansces
2.1 VOWel FEAtULeS ceccocecvcccscnsccsccsscsscccesances
2.2 Boundary FRAtUreS ccecccecescscssccsscscscsccccscsea
2.3 Consonant FRAtUIECS cccececvccossconcsssoncsccosccsse
2.4 Phonological Spellings of lLexical FOIES ceecoecces

R~ — i — BN N V]

3e RULE DEPINITION cccsecivcivsinsccssasssscssoscsnccancsesse
3.1 Right Side Of RULES cceecccccccocaccscccsccncocsea
3- l-1 Phone Naﬂe ® 9O B G0 OGO OGS S GG SOOI OGS SO BSSEOTSOS

«2 Single Feature SpecCificatioOnN cccceececocecnceaes
<3 Nultiple Feature SpecificatiolD .c.cceecccececces
.4 Choice Specification ..ccceccececcccsccecascnca
5 Specification of Optional OcCcCUrrences c.eeee.
.6 Specification of Repeated OCCUITENCES e.ceeee
7 Examples of Complete Right Side Patterns ....
8 Indices of Right Side PATtS c.cccccccccccncoca
nditional Part o0f RuUleS ..ccveeececccccncccscecea 11
ft Side Of RUlL'S cevecoccosvivsoscissansasacacs 13
1 Consonant and Boundary Name .cceceevcccccccscas 13
2 Vowel Specification Left Parts .c.ccecececccceece 14
3 Constructed CONSONANDLS ceeceasccnccscsscscnces 15

¢ & o @ ¢ o @
_._A_._A_A_a_n

L]
O Too~NNdannn
o

WWwWwWw wWwwwwww

W w
.

4. LEXICON AND SUB LEXICON DEFINITION cecesvcescccccccecs 16
’ L.1 Definition of Lexicon ENtriesS cceeccecccccecscaceces 16
4.2 Definition Of Sub LeXiCODNS ccecconcscscnnccncecna 18

5. RULE APPLYING SUBRS cecccceccccvcocscssaccsscnsasnces 18
5.1 Substring Selection ...ccrcecceccccccccaccccscnnceas 19
5.2 Ordered Rule SUDILS cccccccccccccveccsscnnoaracnnese 19

5¢2.71 Oneof SUDL PALtS cececcvcccoccssssseccsccssses 20
5.2.2 Allof SUDL PATLtS ccecevceoveosoncncnnncscscccnse 20
5.2.3 If and Unless PhrasesS ecececccccccccsccccsncncce 21

5.3 Unordered Rule SUDLS ceeececcncccnosncncsccnnsncsnse 27
S.4 Nondeterministic Rule SUDIS ceeecvccaccncnsccnnsas 23

6. THE QUERY COMMAND cccccccccvovcacncscsncsosccnsaccccce 23
T RUN COMMAUDS .cccccvcoccusscosssceanananancssocssasse 23
8. OUTPUT COMHMANDS c.cececcececsceccscscncncsscccsccensacca 29
9. DSLETE COMMAND cceceeccccsacseccscsccsacsccsescncnnnsse 20
10. THE EDITOR AND THE RECOMPILE COMMAND ..ccccececceececs 27

10.71 The Editof eccecesssessasanacuvevsssacesssncsscsa 27

10-1-1 HL and HN COl.aDdS ® ® ® 0 UG GO OB ORNTOVUS GO SBSOGSOSSE 28
10-1.2 PL and PN CO..andS @ & O P OO O OELSSIEees SO GossCe e 28

M“u



24 January 1975 Systenm Development Corporation
-2- TH-5478/000/00

10.1.3 DL and DN CORMANAS cecceceacoscnncconcocnnsces 29
10.1.4 AL and AN COMRANAS ccceceonceccscccacscncncnce 29
10.1.5 T COMBANA 4eeveececcccccccccaccsscasncncnccae 29
10.1.6 E COMBANG ceveeccnccccanccnoccacoccosnsccccncae 30
10.1.7 General Comments About Bditing .....veeecee.. 30
10.2 The Recompile COMMANA eceeccececacasccccccnsccces 30

11. SYSTEM ASPZCTS ®9sccsscesscsscsscssescssssesesscccce I2
11.1 Interaction with the Operating System ....cceeee. 32
11.1.1 Loging in and Loading .cececececccccccccncacs 32
11.1.2 Line Editing Characters c.ccecececcececscsees 33
17.1.3 Prompts and BreaksS .cceccececcccecscccccenncsacse 33
11.1.4 Monitor Conmands from LISP cececcccoccncccsces 34
11.1.5 LISP Return and LOGQing OUt eceeeeecccceccsceoe 34
11.1.6 Errors and WaCNiNgS ceeececccacecaccocccacass 35
11.7.7 Network USAQEe .eceeecceccaceccccasccccncocaccces 36
11.2 ComPiler FlagS ceeecececcencccccsccnoecccsccceees 37
11.3 ARPAbet Spelling PACKAQe c.eeeececcccccocccccnces 37
11.4 Execution SuppOrt PacKkage c.ceeccececcccccccceess 39
11.4.1 Internal Array HandliNg eceeeececcccccocscaes 39
11.4.2 Rule Calling SEQUENCES .cccecccceacccccocccncas U1
11.4.3 Ordered SUDLS c.iccecccacenccncosccccccccncans U1
11.4.4 Unordered SUDLS ceeecccccccacancncccecccccnsas (12 .
11.4.5 NondeterminisStiC SUDBLS ceceevcccncecccccceeas U3

Blblioqraphv ® 00 002020000090 920°0008 00800000000 0cet0s00s000GS uu

Appendices

1. COM”AND SYNTAX ® 20090800 0500000000000 00000000CRCER"SSSSEe uS

2. PHONOLOGICAL SYMBOLS AND THEIR FEATURES cveeeceaceese 50




i
|
|

:

24 January 1975 System Development Corporation
-3- TM-5478/000/00

1. INTRODUCTION

A phonological rules system has been inplemented as a
language extension of SDC INFIX LISPf%]. The system can be
uscd in two modes: (1) as an interactive rule tester, and
(2) as a library of functions with other LISP programs. The
key language carabilities are:

edefinitions of phonological rules,

edefinitions of ordered rule application,
sdefinitions of unordered rule application,
odefinitions of nondeterministic rule application,
slexicon definitions,

esub-lexicon definitions, and

epultiple forms for words in the lexicon.

The key system capabilities and features are:

eability to edit and recompile all definitions,
eability to output symbolics to a terminal, printer,

or disk file in a format that allows recompilation,
eability to selectively test a rule or groap of rules
against a single form, a lexicon entry, a sub-lexicon,
or the entire lexicon, and

eall phonological rule definitions and all rule
appiying subr definitions are compiled rather

than interpreted.

This document describes the phones and their features, the

individual commands, the available editor, and the systen.
Appendix | gqives a formal BNP definition of the commands.

> PHONES_AND THEIR FEATURES

Appendix 2 summarizes the available phonetic symbols and
their features. The symbols wused are from the ARPAbet!.
Each phone has a KIND. The possible values of KIND are
VOWEL, BOUNDARY, and CONKST (consonant).

2.1 VOWEL FEATURES
All vowels have the feature VOICE and a stress level. There

are three levels of stress: 0, 1, and 2. Stress level 0
means reduced, stress 1level 1 means unstressed, and stress

! The ARPAbet is a phonetic representation agreed upon by a
group of ARPA contractors for transmitting phonetic strings
to and from a computer.




24 January 1975 System Development Corporation
TN-5478/000/00

level 2 means stressed. Schwa (AX) 1is always assumed to be
reduced. Other vowels may have their level of stress
specified by fcllowing the vowel name with a colon and one
of the inteqers 0, 1, or 2. For erample, a reduced 1IH is
written IF:0, an unstressed OW is written OW:1, and a
stressed ER is written ER:2.

2.2 BOUNDARY FEATURES

There are twc boundary phones: ¥, which is a syllable
boundary, and #, which is a word boundary. Neither is
marked with any features other than BOUNDARY.

2.3 CONSONANT FPEATURES

A1l other phones are consonants and therefore have the
feature CONST. Each consonant also has a CLASS feature, may
be marked VOICE or not, and may have a place of articulation
specified. The possible values of CLASS are NASAL, PLOS,
FRIC, AFRIC, GLIDE, LATERAL, CENTRAL, and MISC. The
respective meaniugs are nasal, plosive, fricative,
affricative, qlide, L, R, and miscellaneous. The presence
of the feature VOICE means that the phone is voiced. A1ll
the consonants except HH and the glottal stop (Q) have a
place of articulation featare. The values of PLACF are
LABIAL, DENTAL, ALVEOLAR, ALVPAL (alveolar-palatal), VELAR,
and PALATAL.

2.4 PHCNOLOGICAL SPELLINGS OF LEXICAL FORMS

Several system commands input an arqument form spelled in
ARPAbet. The format of the spelling is a sequence of phone
names enclosed in parentheses. For example, a phonological
spelling of HAVING is

(HH AE:2 V*IH:0 NX)
and a spelling of BI” HOUSES is
(B IH G#HH AW:2 2 * AYX 2)

Several points shonld be noted about the input format.
First, it is not necessary to enter the left and right word
toundaries (#) because the systen automatically adds then.
Second, if a vowel other than schwa is entered without an
explicit stress level (:0, :1, or :2 following the vowel)
then the stress level 1is assumed to be 1« Third, all
contiquous pairs of svabols in a phonological spelling must
be separated from each other by one or more blanks unless at




24 January 1975 System Development Corporation
-5- TM-5478,/0n0,/00

least one of them is "(", "), “Wsn_  nwgn_ or w;un, In the
latter case, though not required, blanks are permissible.

% RULE_DEFINITION
This section describes the command that causes a
phonological rule to be compiled 1into the system. A formal
syntax description of <rule> is given in Appendix 1. The
rule langquage is also described by Barnett in [2].

A rule definition 1s introduced by $ followed by a blank ani
the rule name. The rule name is an identifier -- a sequence
of leatters, digqits, and periods, the first of which is not a
digit. The rest of the rule consists of a left side, an
equal sign (=), a right side, and an optional conditional
phrase. The right side of a rule specifies a pattern
{schemata) of phone sequences. If the right side matches
(properly describes) an input rghonetic sequence, the
transformation described by the left side is performed on
the input sequence. The conditional, if present, describes
additional criteria that must te met for the transformation
to be made. For example, a simple rule for changing a T to
a flap (DX) is

$ PLAP DX=VOWEL/T/VOWEL IF SIRESS®1 GR STPESS?3;

The rule name is FLAP. The right side is VOWEL/T/VOWEL ani
describes a sequence of any vowel followed by T followel by
any vowel. The left =side 1is DX, and the associited
transformation is to substitute DX for the sequence between
the / pair, 1in this case for 7. The conditional is 1IF
STRESS®1 GR STRESS®3 and it weans that the transformation
shoull be done only if the stress level of the first phone
(first vowel) 1in the matched sequence is greater than the
stress level of the third phone (second vowel) in the
matched sequence. For example, the input sequence

IH: 2 T 1IY:1
would be¢ transformed by FLAP to
IH:2 DX IY:1
Hovwever, the following sequences would not be *ransformedl:

IH:?2 R T IY:1
IH:1T T IY:2

The first sequence is not matched by the right side because
of the presence of R. 'The seccnd sequence is matched by the
right side of FLAP but fails the conditional test hecause




24 January 1975 System Development Corporation
-6- T H-5478/000/00

the stress level of the first vowel is not greater than the
stress level of the second vowel.

The following subsections describe the right side, 1left
side, and conditional parts of rules and present some
exanmples.

3.1 RIGHT SIDE OF RULES

The right side of a rule describes phonetic sequences ani is
therefore a pattern. This pattern consists of three parts:
a left contexc, a nucleus, and a right context. Any of the
three parts may be vacuous. However, at least one of the
three parts must not be vacuous. The nucleus part of the
riqght side matches the portion of the input sequence that is
affected by the transformation performed by this rule. The
left and right contexts specify the necessary environment in
which the nucleus is to occur. Normally, the nucleus is
delimited by a , pair. If the pair is not present, then “he
whole right side 1is assumed to be the nucleus and the 1l ft
and right contexts are assumed to be vacuous. The following
paraqraphs describe the constituents (<right-partds) that
make up the nucleus and the left and right contexts.

.11 Phone_Nanme

The name of a phone may be used to specify the occurrence of
that phone in the input string. For example, M means the
occurrence of M in the input string, and 1IY means the
occurrence of IY in the input string (with any stress
level). If it is desired to restrict the stress level of a
vowel to a particular value, then follow the vowel name with
a colon and an explicit stress level. Thus, to specify the
occurrence of an IH with 2 stress, write IH:2.

3.1.2

The occurren.e of any phone with a specific feature may be
specified. For instance, BOUNDARY may be used to specify
the occurrence of either * or #. Similarly, CONST specifies
the occurrence of any consonant, and VOWEL specifies the
occurrence of any vowel. In a like manner, the values of
CLASS and PLACE (such as NASAL, which specifies the
occurrence of M, N, or NX, or VELAR, which specifies the
occurrence of either NX, K, or G) may be used. Also, VOICE
may be wused to specify the occurrence of a voiced phone.
To specify the occurrence of any vowel with a specific
stress level, write VOWEL followed by a colon and an
explicit stress level. For example, to specify the




24 January 1975 Systes Developaent Corporation
-7- TM-5478,/000/00

occurrence of a reduced vowel, write VOWEL:0. Any of the
described specifications may be optionally preceded by ¢+ or
el Plus (+) merely emphasizes that the specification
following 1is necessary; the + 1is therefore Jjust wvindow
dressing. Minus (-), on the other hand, ®means that the
specification following must not occur. Thus, -VOICE
specifies the occurrence of any unvoiced phone, -VELAR
specifies the occurrence of any phone except NX, K, or G,
and -R specifies the occurrence of any phone except R.

3.1.3 Yultiple Peature Specification

The occurrence of a phone that simultaneously possesses
several features may be specified ty a <featurc-bundle>. A
feature bundle is representcd as a sequence of feature
specifications (inclufing phone names, choices and other
feature bundles) enclosed in parcatheses. The included
specifications may be preceded Ly ¢ or -. PFor exanmple,

(FRIC LAEIAT)Y and (PRIC+LABIAL)

both specify the occurrence of a labial fricative, i.e.,
either F or V. The feature bundles

({PRIC-LABIAL) and (+PRIC-LABIAL)

both specify the occurrence of a non-labial fricative, i.e.,
T4, S, SH, DH, Z, or ZH. An examrle of a nested feature
bundle is

(FRIC-{LABIAL+VOICE))

This specifies the occuorrence of any fricative that is not
both voiced and labial. It could have been written more
simply as

(FRTC -V)

3.1.4 Choice Specification

The occurrence of a phone imn the input sequence may b2
specificed as a <choice> amonq several specifications. The
individual chcice specifications may be phone names, a
feature, or a feature bundle. The choices are separated by
OR. For example, the choice

NASAL OR (PLOS+VOICE)

specifies the occurrence of a nasal or a voiced plosive.
Thus, it would match any of N, M4, NX, B, 3, or ©D. For

o e e o S g



PR o b g e

———

24 Januarcy 197% Systes Development Corporation
- 8- TH-S478/000,00

another example, the choice
GLIDE OR R OR L
specifies the occurrence of any of Y, W, R, or L. The

equivalent of an AND operator is provided through the
feature bundle mechaniss.

3.1.5 specificatjon of Optioral Occurrences
The optional occurrence of a phone in the input string can
be specified by an <optional> phrase. The word OPT 1is
folloved by a phone name, feature, feature bundle, or
choice. Por example, the specification sequence

VOWEL, OPT R, T
would satch both of the following input strings:

IYRT and IY T
If a phone is detected in the input string that matches the
specification of an optional phrase, then it is passed over
before a matching of the rest of the input striny to the
rest of the pattern is attempted. This means that there is
no automatic backup. To 1illustrate this, the pattern
sequence

VOWRl, OPT VOICE, R
would match the input string

oW AX R
but would not match the input string

OW R D

In fact, the above pattern sequence would match nothing that
did not also match the pattern sequence

VOWEL, VOICE, R

3.1.6 specification _of Repeated Occurrepces

The repea - @ occurrence of phones that satch a particulav
set of cr. eria may be specified by a <repeat> phrase. The
phrase is introduced by “he word REP followved by th2 sinimunm
acceptable nugber of occurrences (a noa-negative integer)
and the match criterion. The asatch criterion may be a phone




24 January 1975 Systea Development Corporation
-9- TN-5478/000,/00

name, feature, feature bundle, or choice. Por example, a
pattern that matches any momnosyllabic word is

¢, REP 0 CONST, VOWEL, REP 0 CCNST, ¢

In the above, the input sequence is specified to include a
teqinning word boundary (%) foilowed by zero or nmore
consonants, a vowel (at any stress level), zero or more
trailing consonants, and an ending word boundary. In the
next example, the pattern sequence will match the beginning
consonant cluster and vowel in a syllable whose initial
cluster contains at least two phones.

BCUNDARY, REP 2 CCNST, VOWEL

Repeat phrases, 1like optional phrases, do no backup. The
repeat wmatches as wmany phones in the input string as
possible. (If at least the specitied minimur number of
occurrences are found, then matching of the rest of the
input string to the rest of the riaht side continues.) For
example, the pattern sequence

EEP 0 CONST, R

would not match anytning because R is a CONST, and as such
would te passed over by the repeat. This may be remedied by
rewriting the rattern seguence as

REP O (CONST-R), R
This second pattern sequence does the job tecause in English

tvo FPs can not occur in the same consonant string unless
separated ty a syllable or word boundary.

3.1.7 Examples of Complete Right Side Patterns

The complete right side of a rule consists of a nucleus and
a left and a right context. PRach of these constituents of
the riqht side comprises a sequence of rphone nanes,
features, feature bundles, choices, optional phrases, and
repeat phrases, The nucleus is normally delimited by a /
pair. The nucleus 1is the portion that will be replaced if
the rule applies. The members of the sequence are separated
trom e¢ich cther by commas. If a / separates two
specifications, then a comma should not be used.

VOWEL/T/VCHEL
The left context is the one-element sequence, VOWEL. The
nucleus is the one-clement sequence, T. The right context
is the one-element sequence, VOWEL. If a rule with this
right side matches a pattern, then the nucleus (T) would be



24 January 1975 Systea Development Corporation
-10- TN-5478,/000/00

replaced by the sequence generated by the rule's left side.

/D OR T, BOUNDARY/Y

In this example, the left context is vacuous, and the right
context is the one-phone sequence, Y. The nucleus 1is the 4
tvo-elemnent sequence D OR T, BOUNDARY. The nucleus matches ‘
any one of these four input sequences:

D*, D #, T *, and T #

VOWEL, NASAL or /VOWEL, NASAL/

Both the 1left and riqht contexts are vacuous in these two
equivalent pattern sequenc2s. The nucleus is the
tvo-element sequence VOWEL, NASAL. These two exanmples
illustrates the point that if the / pair is omitted from the
rule's riqght side, then the entire right side is the
nucleus.

NASAIL//PLGS

In this example, the nucleus is vacuous. The / pair merely
marks a place at vwvhich the left side cap iansert a phone
string if the rule matches.

3.1. 8 Inlices of Right Side Parts

Components of a conditional phrase and a rule's left side ¢
can reference features of the phones that were matched by
the rule's tigqht side. The referenced phone is specified by
@ tollowed by a strictly positive integer. PRach right part .
in the riqht side is assigned an index number starting from

one. For example, in the pattern sequence

VOWEL,OPT BOUNDARY/IY OR IH,REP 1 LABIAL/(PLOS-VELAR),#

there are six right parts:

VOWEL,

OPT BOUNDARY,

IY CR IH,

RCP 1 LABIAL,
(FLOS-VELAR), and
¢

DAV E W~

Though optional or repeat phrases are assigned index

rumnbers, the features of the phones they match may not be
references because it is indeterminate whether they matched

anything at all and, if so, how many phones were matched. v
Example uses of indexed references and their meanings are:

NAMEQ1 name of phcne matched by the first right part




24 January 1975 System Developrnent Corporation
-11- *M-5478,/000/00

KINDD2 kind of phone matched by the second right part

PLACE®? rlace of phone matched by the third right part

CLASSa2 class of phone matched by ‘he second right part

VCICE™ voicing of phone matched by the first right
part

-VOICE®3 inverse of the voicing of phoue matched by the
third riqht part

STRESS@1 stress 1level of phone matched by the first
right part

3.2 CONDITIONAL PART OP RULES

Use of a <conditional> with a rule is optional. If the
<conditional> is omitted, the only criterion for a rule's
matching an input string is that the right side of the rule
properly describe (match) the string. If a conditional
phrase is used, it presents additional criteria that must
also be satisfied for the rule to match the input string.

The form of a conditional is the word IF followed by the
body of the conditional. The body 1is a series of
relationships separated by the word AND or OR (inclusive).
AND binds tiqhter than OR. Thus, if r1, r2, and r3 are
relations, then the meaning of

r1 OR r2 AND r3 is r1 OR (r2 AND r3)

To overcome the normal binding scheme, parentheses may be
used to explicitly group the relations and operators. For
instance, to achieve the other interpretation of the above
exsple, ''rite

(r1 On r©2) AND r3

Relations may either test a feature of a single phone or
compare the features of two rphones. Tests are usually
indicated by using one of the operators EQ, N9, GO, LQ, GR,
and LS. An example of a relation is

PLACE@1 NO PLACE®3

which is satisfied if tne place of articulation of the phone
matching the first ri~ht part is not equal to the place of
articulation of the p.one matching the third right part.
(See section 3.1.8 for an elaboration on the meaning of
indexed references to right parts such as #1 and @3 in this
example.) Another example of a relation is

CLASS®2 EQ FRIC

which is satisfied if the class of the phone that matched




24 January 1975 Systen Development Corporation
-12- TM-5478/000/00

the second riqht part is FRIC. At first, this uay seen
unnecessary. Could not the second rigqht part just have been
written PRIC and the relation not used? To ansver this
question, consider this exaample right side and conditional:

CONST,PLOS OR FPRIC IP VOICEa@1 OR CLASSd2 EQ PRIC

Toqether, the right part and conditional match a two-phone
sequence if either the first phone 1is voiced and the second
phone is a plosive or fricative, or if the first phone is
any consonant and the second phore is a fricative. To write
such complex matching criteria as this, it is necessary to
have conditionals and to be able to wvwrite tests against
constants.

Relations that test a phone's kind, class, place, and namc
may bhe written in one of two ways as demonstrated by the
above examples. In the first way, an indexed feature
cateqory is compared by the operator EQ or NQ to a constant
value in that feature cateqory. Examples are:

KINDA4 EQ VOWEL

CLASSd1 NC PLCS

PLACE®2 EQ VELAR
NAME®3 NC IY

The second method of comparison matches the feature values
of two different phones. Examples are:

KIND®3 NO KIND1
CLASS®@1 EQ CLASS?2
PLACE®3 NO PLACE®?2
NAMEd2 EQ NAMNER1

Relations involving stcess level may be made in a similar
manner. In addition, the operators GQ, LQ, Git, and LS nay
be used. Some examples are:

STRESS®2 GR O
STRESS?1 LS STRESSa3

The possible constant values of stress level are 0, 1, and
2.

Since there are no symbols for constant values of voicing,
the single-phone tests are written as in these examples:

VOICE®?2
-V)ICE23

Comparisons between the voicing of two phones are written as
in these examples:

.

T R T g P T AR o .




24 January 1975 System Development Corporation
-13- TM-5478,/000/00

VOICE?2 EQ VOICE®3 IJ
VOICE?2 NQ VOICE@1

Only the operators EQ and N0 may be used 1in voicing
comparisons.

8.3 LEFT SIDE OF RULES

The <left-side> of a rule specifies the sequence of phones
that is to replace the sequence of phones that was matched
by the nucleus part of the ru.e's right side. If the
sequence to be substituted is vacuous, then the left side is
NIL. For example,

$ DEGEM NII=/CONST/OPT BOUNDARY, CONST
IF NAME31 EQ NAMEQ3;

This is the version of the standard degemination rule that
removes the first consonant of a doubled pair whether or not
they are separated by a vword or syllable boundary. DEGEM
produces the following transformations:

TT to T
5*S to *5
» M#M to #N

If the sequence to be substituted is nnt vacuous, then it is

. represented by a sequence of <left-part>s separated by
commas. (In a prior version of the system, a rule could
have wmultiple sequences of left parts. See [2].) The
allowed kinds of left parts are consonant npames, boundiary
names, vowel specifiers, and constructed consosnants. The
following paraqraphs describe the different kinds ot left
parts and present some examples of complete rules.

3.3.1 Consonant and Boundary Name_Left Parts
A consonant or boundary name may be used as a left part.
For example, in the rule

$ FPLAP DX=VOWEL/T OR D/VOWEL
IF STRESS®1 GR STRESSAa3

DX is a left part. Tt is substituted for an intervocalic T
or D whenever the stress level of the first vowel exceeds
- that of the second vowel,

Tn addition, consonants and boundaries may be specified as
left parts by use of index numters. Por exanmple,




—

24 January 1975 Systea Development Corporation
-14- T M-5478,/000/00

$ P00 3,2=VOWEL/BOUNDARY,R OR L/VOWEL:

In this example, the twvo phones matching the nucleus are
t.onsposed. The index 3 references the phone R or 1L, and
tae index 2 references the phone * or # that matched
BOUNDARY. Two transformations that would be produced by
this rule are

AH*R IY to AH R*IY
AX#L UW to AX L#UW

Index references are restricted to phones that are matched

by the right side. Thus, it is illeqal to reference, say,
the first phone following the string matched by the pattern.

. 352 Vowel Specification Left Parts

The specification of a vowel 1in the reconstruction sequence
may bo accomplished in a variety of ways. The vowel nanme
and the stress level may be given explicitly, the name
and/or stress level may be borrovwed nsing indices, or the
stress level may be borrowed implicitly. The various
technigues are demcnstrated by the following examples.

$ R1 IU': 1=/VOWEL,OPT BOUNDARY,N;
In this example, an 1H with stress level one is substituted
for the vowel that matched the first right part.

$ K2 TH?1=/VOWEL/OPT BOUNDARY,N;

like the above example, IH is subkstituted for the vowel that
matched the first riqght part. However, the stress level is
borroved from the oriqinal vowel by @1. Thus, if the input
string Were IY:0%*N then rule R1 produces IH:1*k and rule R2
produces 1H:0*N.

$ R3 1,R=/VOWEL,*,ER:0/;

As with consonant and boundary names, vowvel names may be
referenced by an ind=x. In this example, the left part 1 is
whatever vowel (apd its stress level) that is matched by the
first riaght part. Thus, R3 would transform the input string
AH:2*ER:0 to AH:2 R.

$ R4 123,R=VOWEL,*,ER;

This ecxample is like R3 except that only the vowel name is
torroved from the phone matching the first right part. The
ctress level is borrowed from the ER that matches the third
right part (by the #3). Thus, R4 would transform the input
string AH:2*¢*ER:0 to AH:(Q R.

S—



. T ————————

EVR TPITRE wmgpges

W €

24 January 1975 System Cevelopment Corporation
~-15- TM-5478,/000/00

$ RS IH=/IY OR EH/N:

In this example, only a vowel nanme (IH) is given as a left
part. When this form of left part is used, the stress level
is borrowed from the phone “hat matches the first vouel
specification in the nucleu:. These are two transformations
that result from the application of rule RS:

IY: 1 N to IH:1 N
EH:0 N to 1IH:0 N

Another examrle of implicit stress torrowing is rule Ro:
$ R6 ER=VOWEL,R,*,VOHEL:

R6 transforms the input string EH:2 R*AX to ER:2 because the
stress level is borrowed from the first vowel.

Two things should be noted in using vowel-specifying left
parts: (1 it is illeqal to write such things as AX@3 or
AX:0 becausc AX is automatically given a stress of zero, and
(2) when an 1implicit stress level is borrowed, it is never
ta en from a vowel that was matched by a repeat or optional
rhrase; it 1is borroved from the first other right cgcart in
tne nucleus that specifies a vowel (if there is a choice,
then each choice must specify a vovel).

3.3.3 Constructed Cousonants

Some conscnant rhones may be constructed by specifying their
tedatures. Specifically, the class, place of articulation,
and voicing must be specified, in that order, and enclosed
Ly parentheses. Some examples of constructed consonants
are:

(NASAL ALVEOLAR VOICE)
(PLOS PLACE®2 -VOICE)
(CLAS533 LABIAL VOICEa1)

The tirst example is equivalent to having written N. The
class specificaticn may be either a class name or the word
CLASS followed by 9 and an index. Examples from the above
dare NASAL, PLOS, and CLASS®3. Iu *he last case, the class
of the constructed phone is made the same as the class of
the ohone that matched the third right part. In a similar
manner, the place of articulation may be either . place name
or the word PLACE followed by @ and an index. Exarples from
the abore are ALVEOLAR, PLACE®2, and LABIAL. Voicing of a
construc*ed consonant is specified by either VOICE or -VOICE
witn the obvious meanings, or by use of a borrowed voicing,
€.q., VOICE®3 or -VOICE®@2. An example of a rule that uses a
coustructcd consonant is:




24 January 1975 Systed Development Corporation
-16- TH8-5478,/000/00

A

$ JHA 2, (AFRIC ALVPAL VOICE?1)=T O D,BOUNDARY,Y
This rule vould make transformations such as

D*¥Y tg *JH
T#Y to #CH

A caution should be ohserved when using constructed
consonant forms -- namely, that there exists a phone with
the specified class, place of articulation, and voicing.
Because o% this, it is illeqgal to comnstruct a consonant in
the class MISC. It :s the user's responsihility to quard
against the gemeration of illeqal rhomes. The systea does ;
little run-time checking. P

4. LEXTCON AND SUE-LEXICON¥ DEFINITION

“““““ ST {

This section describes the coamands that are used to define
lexicon entries and fora sub-lericons. Appendix 1 gives a
formal syntax description of these foras (<lexicon> and
<sub-lexicon>).

4.1 DEFINITICN OF LEYICON ENTRIES

There are three tasic foras of the lexicon command: (1) ‘
add, reoplace, or modify a lexicon entry; (2) augment a

lexicon entry; and (3) print out a 1lexicon entry. All

lexicon commands begin with the word LEX and end with a

semicolon. A lexicon entry is identified by a word, e.q.,

an identifier such as HELLO or ONE.TWO.THREF. Associated

with ¢ach word in the lexicon are one or more ARPAbet

spellings. Each of these spellings is called a lexical bhase i
form or, more siaply, just a form.

The basic coamand that adds a new word and its forms to the
lexicon is the word LEX followed by the word and the forms
spelled in ARPAbet (as described in Section 2.4). To enter !
a phonclogical spelling of the word TOTAL, input this I
command:

LEX TOTAL (T OW:2 T®AX L);

Recall that the exterior word boundaries are automatically
added so that the actual spelling is

#T OW:2 T*AX L#

It it 1s desired to enter the word TOTAL vith ¢tvo foras,
then the forms are separated by commas; for example:



N

24 January 1975 Systea Development Corporation
-17- TH-5478/000/00

LEX TOTAL (T OW:2*T AX L), (T 7K:2 T*UH:0 L):

dith either of the above examples, if TOTAL was already in
the lexicon, all existing forms would be deleted, and the
new definition would comprise the entire set of forms for
this word.

Various commands allow the fornms to be referenced
individually. The 1language mechanism is the vword followed
by a colon and an index nuamber. Thus, qiven the second
definition above of TOTAL,

TCTAL:1 is #T OW:2 T*AX L#
and

TOTAL:2 is #T OK:2 T*UH:0 L#
It is also possible to selectively alter the definition of a
particular form as opposed to redefining th. whole entry.
For example, after

LEX TOTAL:2 (T OW:2 T*AH:0 L) ;
TOTAL:1 1s unaffected but

TOTAL:2 is now #T OW:2 T*AH:0 L}
When using this fcrm of the lexicon command, the index must
reference an existing form or be one greater than the number
of forms currently in existence. In the latter case, the
nevw form ics added to the lexicon entry.

New forms may easily be added <o the lexicon entry. Assume
that the command

LEX CUP (K Ah P):
has been executed, and then the command
LEX CUP+(K AH B), (K UH P);
is entered. There are now three forms of the word cUp:
CUP:1 is &K AH: 1 P#
CUP:2 is #K AH:1 P&#
CUP:3 is #K UH:1 P#

Thus, new forms are added by using + followed by one or more
ARPAbet spellings.

The lexicon command is also used to output forms to the
user's terminal. Given the above definition of CUP, the
command

l
e oo AR e “I.-ﬁ‘u‘-‘“u“‘j



System Development Corporation

24 January 1975
-18- TN-5478/000/00

LEX CUP;
would output all three spellings. The command
LEX CUP:2;

would only output the spelling of CUP:2.

b.2 DEFINITION OF SUB-LEXICONS

A sub-lexicon is defined by a <sub-lexicon> command. The
format of the coamand is the word SLEX folicwved by the
sub-lexicon name (an identifier), and the cotstituents
separated by commas. For exaample,

SLEX EXAMELE TOTAL, CUP:2;

The sub-lexicon EXAMPLE is defined to contain all the forms
of the word TOTAL but only the second form of the word CUP.
A word or its forms may appear in any number of sub-lexicons

A sub-lexicon definition is maintained in symbolic form.
Therefore, the actual forms that constitute the sub-lexicon
are those in existence vhen the sub-lexicon is referenced --
not necessarily the same as those in existence when the
sub- lexicon vas defined.

5. RULE_APPLYING_SUBR3

dhen a rule is operated on a phonetic input string, it is
usually desired to try it om all substrings, not Jjust tae
input as a whole. Therefore, given the rule,

$ FLAP DX=VOWEL,OPT BOUNDARY/T CR D/OPT BOUNDARY,VCVWEL;

the desired transformation of
$WH AH:1 TH#AX#D EY:2¢ 1is #WH AH: 1 DX#AX#DY EY:2¢

Thus, it 1is nececssary to define the algorithm by which a
rule is tried on substrings of the input.

Also, it is usual to operate rules in groups. Such a qroup
is called a rule set. At issue is the method of defining
the constituents of a rule set and the order dependencies of
the set members. The system provides three methods of
specification: (1) ordered rule sets -- normally used with
nobligatory" rules, (2) unordered rule sets -- normally used
with "optional" rules, and (3) nondeterministic rule sets --
normally used for fun. All three types are defined by




24 January 1975

System Development Corporation
-19-~ TH--5478 /000,00

<subr> commands.

The following subsections describe substring selection
alqorithms and the methods of defining rule-applying subrs.

5.1 SUBSTRING SELECTION

An inpnt string is a phonological spelling of a word or a
sequence ot words. It is unusual that a rule will match (or
was intended to match) the entire input string. Therefore,
the rule set appliers wmust select substrings as possible
candidates on which to try the rules. By example, the
possible substrings of

#K AA:2 N#D UW:1#
are

#K AH:2 N#D UW:1#
K AH:2 N#D UW: 1%
AH:2 N#D UW:1#
N#D 0OW: 1#

#D OW:18

UWe 1#

#

Because neither opticnal nor rereat phrase (in the riqht
side of rules) oerform backtracking and because rules permit
arbitrarvy parts of the input string to exist to the right of
tie substring matched by the right part, the above set of
suostrings 1is sufficient. With the different types of
rvle-applying subrs, the interaction (ordering) of members
of the rule set with substrings of the input and substrings
of the derived strings may differ as described helow.

5.2 ORDERED RULE SUERS

An ordered rule-applying subr is defined by the w«ord SUBR
followed by its name (an identifier) and = sequence of
<subr-part>s separated by commas and terminated with a
semicolon. The word OKDF4HED may follow the word SUBR but is
not necessary -- ordered sutbrs are the default. In
operation, the first subr part is applied to each substring
of the input in turn, left to right. Then the second subr
part is applied to each substring, etc. Tf a rule in a subr
part matches the input string, it is immediately transformed
by the rule, and the rest of the Frocessing continues at the
same phone position in the derived string. T.us, the subr
parts and the rules they comprise are treated as obligatory
transformations. The algorithm is presented sysbolically in




24 January 1975 System Development Corporation
-20- TH-5478,000/00

DEPINE RUNRULE{SUBRPARTLIST, ARPASPELL)
DO SPELL:=ABRPASPELL;
LSPELL:=LEXGTH (SPELL) ;
POR SUEBEPART IN SUBRPARTLIST
DO FOR I:=1 STEP 1 ONTIL I>LSPELL
DC SUBRPART (SPELL,I);
END FOR;
END FOR;
END RUNRULE;

Piqure 1
OCRDERED RULE APPLICATION ALGORITHM

Fiqure 1. Apgplication of a subr part SUBRPART(SPELL,I),
operates on the substring starting at the Tth phone
position. As a side effect, the values of the variables
SPELL and LSPELL (spelling lenqth) may be altered.

A subr part mav be a rule same or a oneof, allof, if, or

unless phrase. A rule name nsed as a subr part means simply
operat€e the rule at the proper times. The following
paraqraphs describe the other kinds of forms that may be
used as subr parts.

2.1 Oneof Subr Parts

A oneof subr part is introduced by the word ONBOF followed
by a parenthesized list of one or more subr parts separated
by commas. Por exanrle,

ONEOP(R1,R2)

The rule names R1 and R2 are the embedded subr parts. A
oneof phrase runs its embedded sukr parts (in the left to
right order of their appearance) on the currently visible
substring. Tf any rule in a subt part matches the input
substring, then after the completion of the operation of
that subr part, the rest of the oneof phrase in which it is
emtedded is skipped. Therefore, in the above example, if R1
matches the input substring, then R2Z is not operated.

He2.2

An allof subr part is introduced by the 4ord ALLOF folloved
by a parenthesized list of one or more subr parts separated
by commas. For example,




24 January 1975 System Development Corporation
-21- TM-5478,000/00

ALILOF (ONEOP(R1,32), R3, RA4)

The emtedded subr parts are the oneof phrase ONEOF (R1,R2)
and the rule names R3 and R4. An allof phrase operates the
embedded subr parts in the specified order, 1left to right.
In the atove exaample, R1 is operated; if it matches the
input substring, then R3 and R4 are operated on the
transformed scring. Otherwise, rules R2, R3, and R4 are
operated in that order. Recall that all embedded subr Fartes
are run on the substring starting at the sanme phone
position. Therefore, caution zhould should be exercised to
ensure compatibility of operation with your original
intentions.

5.2.3 If and Unless Phrases

If and wunless sulr parts provide for standard if-then and
if-then-else control logic. An if phrase is introduced by
the word IF followed by a subr part, the word THEN, another
subr part, and optionally the word ELSE followed by vyet
another sutr part. OUnless phrases are identical in format
to if phrases except that they are introduced by the word
UNLESS instead of the word IP. 1If s1, s2, and s3 are subr
parts, then the possible formats are:

IF s1 THEN s2

UNLESS s1 THEN s2

IF s1 THEN s2 ELSF s3
UNLESS s1 THEN s2 BELSE s3

For the first format, s1 is run. Tf any rule run in s1
matches ¢the 1nput, then s2 is run. Otherwise, s2 1is
skipped. For the second format, =1 is run. 1If no rule run
in s!1 matches the input, then sz is run. Otherwise, s2 isg
skipped. For the third format, s1 is run. TIf any rule run
in s1 matches the input, then s2 is run. Otherwise, s3 is
run. PFor the fourth format, s1 i€ run. TIf any rule run in
s1 matches the input, then s3 is run. Otherwise, s2 is run.
All applicable embedded subr parts (s1 and s2 or S3) are run
on the substrings at the came phone position. (Tf s1
matches the input, the 1input 1is transformed before the
operation of s2 or s3.)

5.3 UNORDERED RULE 5UB"S

An unordered rule-atrlying subr is defined by the word S!BR
followed ''v the word UNORDERED, its nane (an i1dentifier),
and the nine of the rules in the rule set separated by
commas. For examrle:

e g p——




24 Januvary 1975 Systes Development Corporation
-22- TH-5478,000,/00

CEFINE RUNRULE (RULESET,ARPASPPLL)
DO LOOPER(RUL ISET,ARPASPELL,1);
END RUNRULE;

DEYINE LOOPER (RULESET,ARPASPELL, INDEX)
DO PRINT(ARPASPELL) ;
FOR I:=1 :EX STEP 1 UNTIL IDLENGTH(ARPASPELL)
DO POR RULE IN RULESET
DO CHANGES :=RULE(ARPASPELL,I):
IF CHANGES

THEN DO NEWSPELL:=MAKECHANGE (ARPASPELL,

CHANGES)

LODPER(RULESET,NEWSPELL,I);

END;
END FOR:
END FOR;
END LCOPER:
Fiqure 2
UNORDERED RULE APPLICATION ALGORITHHN
Fiqure 2

SUBR UNORDERED XYZ R1,R2,R3;

XY?. is defined as an unordered rule-applying subr that
operates the rule set that concsists of the rules R1, R2, and
R3. Fiqure 2 shows the rule-application algoritha. Wwhen a
rule is run on an input string (CHANGE:=RULE (ARPASPELL, I)),
it is passed two arquments: (1) the total input string and
(2) the phone fgositionm at which the current substring
starts. The value of the rule is false if the rule does not
match the current input string. If the rule does match,
then the value is the set of changes that should be produced
by the rule's left side. The function, MAKECHANGE, takes
twvo arguaments: (1) the original spelling, and (2) the set of
change instructions. The value is a new spelling with the
changes made. The original spelling (the value of
ARPASPELL) 1is not altered. As can readily be seen by
tracing through LOOPER, each rule in RULESET is run at each
position of the input strinqg, with and without other
anplications cof rules in the set.

The critical difference betvween an unordered and a
nondeterministic rule subr is the following case. Assunpe
that rule R1 applies to the input substring starting at
phone position 1, and rule R2 would apply to the input
substring as produced by the transformation done by the left
side of R1, but starting at phone position 1i2 where i2<i1l.
Then an unordered subr will aot operate R2 after RV, while a

—



24 January 1975 System Development Corporation
-23- T™-5478,/000/00

nondeterministic subr will. The advantage of the unordered
subr is that it is much faster. In almost no case will tne
~ifference 1n output be noticeable.

5.4 HONDETERMINISTIC RULE SUERS

The format of a nondeterministic rule subr is identical to
that of an unordered rule subr except that the keyword
NODETERM 1s used rather than UNORDERED. For example:

SUBR NODETERM XYZ R1,R2,R3;

defines the rule-applying subr XYZ with rule set R1, R2, and
R3. Figure 3 shows the alqorithm used for nondeterministic
‘rule aoplication. In operation, a nondeterministic subr
attempts to apply every member of the rule set against every
possible substring of the input and the derived strings.
This process continues until no nevw spellings <can be
generated and then tereinates,

6. THE_QUERY COMMAND
A ? may be used to query the system for the names of the
defined entries. The four forms of the <query> command are:

RULESS
SUBRS;
SLEXS:
LEX:

'V ey 'Y

The respective meanings are: (1) output the names of all
defined rules, (2) output the names of all Jdefined
rule-aprlving subrs, (3) outpnt the names of all defined
sub-lexicons, and (4) output the names (not the spellings)
of all defined lexiccn entries. All output is to the user's
terminal. For more detailed output, see Section 4 on the
lexicon ccmmand and sSection 8 on the output commands.

7. RUN_COMMANDS

ibere are three comdands that may be used to run a rule subr
agqainst a form, a word in the lexicon, a sub-lexicon, or the
whole lexic-n. The commands are <rund>, <joe>, and <maryd>. 2
The run command beqins with the word RUN followed by the
name of a rule-applying subr and the specification of the

2 The names were chosen purely artitrarily.




24 Sanuary 1975 Systea Development Corporatiou
-24- TN-5478/000/00

DEFINE RUNRULE(RULESET, ARPASPELL)

DO DONESET:=ENPTY;

TRYSET:=SET OF (ARPASPELL);
X:IF EMPTY (TRYSET) THEN GO D;
SPELL:=CHOICE OF (TRYSET) ;
ADD SPELL TO DONESET;:
REMOVE SPELL FPROM TRYSET;
FOR I:=1 STEP 1 UNTIL IDLENGTH(SPELL)
DO FOR RULE IN RULESET
DO CHANGES:=RULE(SPELL,I):
IF CHANGES
THEN DO NEWSPELL:=MAKECHANGE(ARPASPELL,
CHANGES) ;
IF NEWSPELL NOT IN TRYSET AND
NEWSPELL NOT IN DONESET
THEN ALCD NEWSPELL TO TRYSET:
END;
ERD POR;
END FOR;

GO X:

D: FOR SPELL IN DONESET DO PRINT(SPELL) ;

END RUNRULE:

Figure 3
NONDETERMINISTIC RULE APPLICATION ALGORITHM

input string(s). The joe command is the word JOFE followed
by the specificaticn of the input string(s). JOE is an
unordered rule-applying subr that uses ail rules that are
currently defined. It 1is automatically recompiled by an

implicit subr command whenever it 1i: necessary. The mary
command is the worl MARY followed by the specification of
the input string(s). MARY is a nondeterministic

rule-applying subr that uses all the rules that are
currently defined. It 1is automatically recompiled by an
implicit subr command whenever it is nhecessary. All forms
of the run commands are terminated by semicolons. When a
subr is operated, all derived spellings are output along
with the names of the rules that have transformed the
string. The forms of the inpur string specification arve
descri. *d by example.

RUN X¥2Z (T EH:2 S T):

The rule-applying subr XYZ 1is operated against the given
ARPAbet spelling with exterior word boundaries appended
automatically.

JOE TEST;
The rule-applying subr JOE is operated against each form of




R T I S o

24 Januvary 1975 System Developament Corporation
-25- THM-5478/000/00

the word TEST that is in the lexicon. If necessary, JOE is
recompiled.

MARY TEST:2;

The rule-applying subr MARY is operated against the second
torm of the word TEST from the lexicon. If necessary, MARY
is automatically reccmpiled.

RUN ABC LEX:
The rule-applying subr ABC is operated against each form of
each word in the entire lexicon.

RUN JOE LEX FOu;
The rule-applying subr JOE is run against all forms in the
sub-lexicon FOO. This command is exactly equivalent to

JOE LFEX FO0O;

]
8. QUTPUT_COMMANDS

Three commands are available for the output of defined
objects and the output of the results of some run commands.
Output may be to the user's terminal, printer, or disk. The
<output> commands beqin with the name of the device:
TERMIVFAL, PRINTER, or DISK. If DISK 1is used, then a file
name is also given.3 The output options, separated by
comaas, follow the device (and file) specification. The
possible output options and their meanings are:

SUBRS - output the current definition of all rule
applying subrs as subr commands.

RULES - output the current definition of all rules as §
comnmands.

SLEXS - output the <current definition of all
sub-lexicons as slex commands.

LEX - output the current definition ot each 1lexicon
entry (all forms) as lex commands.

ALL - equivalent to the output option sejquence LEX,
SLEXS, RULES,SUERS.

3 The knowledqeable LISP user may instead specify a file
descriptor list. A file name alone, say PN, is equivalent
to the file descriptor list (FN INPIX A W). In any event,
if the selected disk output file already exists, it is
erased before the cormand is executed.




24 January 1975 System Development Corporation i
-26~ TM-5S478,000,00 :
SUBR s - output the current definition of the rule

applying subr s as a subr command.

RULE r - cutput the current definition of rule r as a $
command.

SLEX 1 - output the current definition of sub-lexicon 1
as an slex command.

RUN s 1 - (vhere s 1is a rule-applying subr name
b including JOE and MARY, and 1 1is a sub-lexicon name or
the word ©LEX) applies s to all forms specified by 1;
each original and all derived forms are output.

All output options except run print in a format that is
proper for recompilation. Thus, the command,

DISK XYZ ALL;
would output all current definitions to the file XYZ 1in a

recompilable format. To compile the contents of a disk
file, use 1 dcomp command such as

DCOMP XYZ;

The combination of a disk and dccmp command may be used to ) i
obviate the necessity of saving the entire system module to ) 4
preserve work in rrogress. i

Other cxamples of output commands are

TERMINAL SUBR FOO, RULE FLAP;
PRINTER RUN FOO SL1;

The first compand outputs the definition of the
rule-applying subr FOO and the rule PFLAP to the user's
terminal. The second command outputs the results of .
operating the rule-applying subr FOO against each form in ¥
the sub-lexiccn SL1 to the high speed printer.

For some uses, the query command is more economical -- see
Section 6.

9. DELETE COMMAND
A delete conmand may be used to remove from the system a

rule-applving subr, a rule, a sub-lexicon, or a lexicon
entry. The forms of the command are described by exanmples.

o e -




24 January 1975 Systen Development Corporation
=27~ T™M-5478,000,00

DEL SUBR XYZ;
The rule applying subr XYZ is removed from the system., All
associated symrbolic data and code are erased.

DEL RULE ABC;

The rule ABC is removed from the systen. Al]l associated
symbolic data and code are erased. Rule-applying subrs that
reference this rule should be edited and recompiled.

DEL SLEYX QRS:
The definiticn of the sub-lexicon ORS is removed from the
systen.

DEL TOTAL;

The lexiccn entry TOTAL and all of its forms are deleted
from the lexicon. Sub-lexicons that reference this word or
any ot its torms should be edited and recompiled.

10.

This section Jdescribes a mini-editor that may be wused for

correcting input and a command for entering edit mode with
current definitions.

10. 1 THE EDITOR

The editor is automatically entered when a syntax error is
detccted or when certain cther error conditions occur. The
input to the LISP INPIX compiler {and hence commands to the
rule system) are viewed as token s*rings. Examples of
tokens are identifiers, unsigned nupkters, and delimiter
characters such as colon, plus (+), and equal (=) . During
compilation, tckens are input and added to a "last tokens
input 1list", When an error is detected, this 1list is
available for editing. If input is from a terminal, the
part of the input line past the poiat at which the error is
detected is 1lcst. If input is from any other device, the
current character and token positions are maintained as a
point at which further input may be found after editing.

Upon entry to the editor, an optional error message 1is
output along with the last several tokens on the last tokens
input list, If no specific error message is issued, the
probles 1s some general syntax malady, such as using a coama
for an identifier. During editing, two token lists are
maintained -- last (initially the last tokens input list)
and next. At the completion of editing, last is appended to
the front of next. The combined 1list is then used as the
input source for the compilation. If the comamand is not
completed in this list, more tckens are input from the file




24 January 1975 Systea Development Corporation
-28- TM-5478,/000,00

t.hat was in use when the error occurred. If a further error
occurs, the editor is re-entered. If the error occurs while
using the 1list, tien the tokens up to and including the
error are on the last tokens input list (last) and the
remaining tokens are on next. Parts of both last and next
are output upon editor entry if they are aot empty.

Several commands are available in the editor to manipulate
last and next: ML, MN, FL, PN, DL, DN, AL, and AN. The
commands T and E are also available to continue or abort the
compilation. Multiple commands may appe:¢r on one line, and
A single cormand may stretch over multiple lines. The
following paragraphs describe the commands.

10.1.1 ML_and_pHYN _Commands

ML is followed ty a Fpocitive integer. The specified number
of tokens are moved from next to last. MN is used in a like
manner to transfer tokens from 1last to next. Given the
following initial values of last and next:

SUBR FOO ALLOF )
A ' B ) ’ C :

last
next

the command ML 2 would produce

last
next

SUBR FOO ALLOF ) A ,
B) , C;

and the command MN 2 would procduce

last
next

SUBHE FOO
ALLOF ) A ,B) , C ;

10.1.2 PL and_ P

PL and PN are followed by a positive integer. The specified
number of tckens on last or next, respectively, are printed.
Given the initial configuration

last
next

$ FLAP DX = VOWEL / T
OR D / VOWEL

the command PL 3 would output
VOWEL / T

and the command PN 3 would output

or D /




24 January 1975 System Developaent Corvoration
-29-~ TM-5478,/000,/00
10.1.3 DL_and_DN Commands

DL and DN ~vre followed by a positive integer. They delete
the specified number of tokens from last and next,
respectively. Given the initial values of last and next:

last SLEX SL1 TOTAL
next ¢« o COULD ;

the cowmand DL 2 would produce

last = SLEX
pext = , , COULD :

and the command DN 2 would produce

last = SLEX SL1 TOTAL
next = COULD :
10.1.4 AL_and_AN Commands

AL and AN are followed by an input sequence. They add the
input sequence to last and next, respectively. The input
sequence is delimited (on both ends) by any token that does

not appear in the sequence. Given the initial values of
last and next

last
next

SLEX S2 TOTAL ,
COULD , ANY ;

the command AL / PRODUCT, / would produce

last
next

SLEX S2 TOTAL , PRODUCT ,
CCULD , ANY ;

and the command AN / PRODUCT, / would produce

last = SLEX $2 TOTAL .

next = PRODUCT , COULD « ANY
10.1.5 T_Command
The T command siqnals that editing should be terminated and
that compiling shculd commence. The compiler restarts with
the tokens in last and next and then returns to the input
file for any additional program text. - If input is from the

user's terminal, additional text may be input on the same
line as the T command (or on tollowing lines). If input is
from a device other than the terminal, then reading resumes,
after exhaustion of last and next, just beyond the point at




24 January 1975 System Development Corporation
-30- TN-5478,/000/00

which the error wvas detected. FPor exaample, suppose that the
following line were inpu’ from the terminal:

SUBR FOO ONEF) A,P; ,C:

The editor would respond with the error message "MISSING (".
The value of last would be SUBR FOO ONEOF ), and next would
he empty. The remainder of the input line (because it came
from a terminal) would be discarded. The remedy would be
the sequence of commands:

DL 1 T (A,B) ,C;
DL 1 would delete the erroneous ")", and the T command would
initiate the re-compilation. The total token sequence input

to the compiler would then be

SUBR FOO ONECF ( A, B) , C ;

10.1.6 EC

o

mmand
An E command exits (aborts) compilation of the <current
input. This command 1is recognized only by the editor. If
input is from the terminal, the the command supervisor will
he left in a position to accept the next command. If input
is from some other device, the rest of the input file is
skipped.

10.1.7 General Comments_ About Editing

YL, MN, PL, PN, DL, and DN commands receive a token count
{an 1inteqger) as an arquiaent. If the count exceeds the
number of tokens in the list (last or next) spscified by the
command, then the whole list 1is moved, printed, or deleted,
as is appropriate. An input to the system may be broken
vith a % preceded by a space. If you are in the eiitor, you
will stay there. If not, you will be put into the editor
with the message, "ESCAPE".

10.2 THE FECOMPILE COMMAND

B recoapile command is vsed to edit and recompile the
definition of a rule-applying subr, a rule, or a
sub-lexicon. Assume that S is a subr name, R is a rule
name, and SL is a sub-lexicon name. Then three forms of the
commaud Are:




24 January 1975 System Developament Corporation
-31- TN-5478,/000/00

RECCMP SUER S;
RECOMP RULE R;
RECOMP SLEX SL;

When definitions are input to the system, the symbolic token
string is kept "tvo deep". That is, the latest and next to
latest definitions are maintained. The above commands woik
on the latest definitions. To work on the oldert
definitions, use commanéds of the form:

RECOMF OLD SUBR 5;
RECOMP OLD RULE R;
RECOME CLD SLEX SL;

The recomp command causes the specified definition, as a
token string, to become the value of the editor's 1list,
next. Last is emptied, and the editor is entered. You may
then make any appropriate changes and give a T command to
reconpile the definition with the modification(s). For
example, suprose the following definition is made and used:

SUBR FOO ALLOF(A,B) ,CNEOP (C,D):
The command

RECCMP SUBR FOO;
is given. Then the following edit commapds are issued:

ML 2 DL 1 AL , ONEOF / T
The new defirition of FOO is

SUBR FOO CONEOF (A,B), CNEOCF(C,D);
and the original definition is the one useable by the word
OLD. To restore the old definition and make ¢the cucrrent
definition the cld one, use the command

RECOMP OLD SUBR FCO;

Simply give the editor the T command, and the recompilation
and swap will cccur.

When definiticns are output (by an output command), only the
current (or 1latest) definition is printed. The Adelete
command deletes both the current and the old definitions.
when definitions are made for which no current definitions
exist, the present input becomes both the current and the
old definition. If an uncorrected error occurs in a
definition (giving the editor the F command) no changes or
additions occur in the saved copies.

| B s




h_—-———

24 Janvary 1975 System Levelopment Corporatiorn
-32- TM-5478/000,00

m. SYSTEN ASPECTS

This section describes sosme miscellaneous features and
capabilities of the phonological rule testing systea as
opposed t« the ccmmand lanquage. Even though many of the
discussed i{ems are of interest only to one using the system
as a function 1library, others using the system can benefit
from a quick reading of this section.

The phonological rule testing syster is embedded in SDC
LISP. The commands are implemented as an extension of the
IISP INFIX lanquage. It is possitle to intersperse rule
system commands with input to the LISP compiler and
evaluator. Therefore, some commands that contain syntax
errors may be interpreted as LISP. When this happens, the
resulting error messaqges and/or evaluations are based upon
the standard LISP rules.

The following subsections describe interaction with the
operating system, conmpiler switches, functions that process
ARPAtet, and the subr executicn support routines.

11.1 INTERACTION WITH THE OPERATING SYSTENM

SDC LISP and hence the phonological rule testing systenm
operate under the VM/370 nmonitor using CMS -- see [3]}.
Terminal connection is made to the system via either a
telephone or the ARPA network -- see fa]. The following
descrites the rprocedures using a telephone connection.
Section 11.1.7 describes the differences using the network.

11.1.1 logging in _and_Loading

After vou dial VM on a telephone line, the system outputs
tne herald "VM/370 ONLINE"™ and enters an idle state. To
login, hit the carriage return and wait for the output of
"in, Then tyre a login command.

L user pass

User is the wuser's account name and pass is a passvord
associated with that account. (The login and all other
commands and input 1lines are “*erminated by a -carriage
return.) The system responds to the login with the output of
a variety of qreetirq and informative messages. You are now
logged into the system and may issue commands to the
monitor.

At this point, you will wish to 1load and vuse the
rule-testing system. This is possible only if the RULELIB




24 January 1975 Systea Development Corporation

=3I T 8-5478/000,00

191 disk 1is attached to your 1login. If it is not, then
enter the coamand sequence,

LINK RULELIB 191 198 RR
ACC 198 B

To load the systea, input the command
TESTROULE
The system is loaded, and LISP outputs its set of greeting

messages. A state has been reached vhere you may now enter
rule lanquage commands and LISP expressions.

Tsfla2 Line_Editing Characters

The operating systeama provides a minimal line editing
capa''ilitv. The input of certain characters affects the
composition of the 1line. The default line editing
characters and their meanings are: @ (delete this and the
previous character from the input 1line); [ (delete this
character and all previous characters from the input line) :
¢ (logical end of line -- used to input two or more logical
lines on the same physical line); and " (accept the next
character as is -- do not interpret it as a 1line editing
character).

As luck would have it, each of the chosen four line editing
characters has a usaqge in the rule testing language or INFIX
LISP. Therefore, it is stronqgly recommended that some such
cornand as

TERM CH { L1INED _ LINEN OFF ES CFF

be enter=d to the monitor (not to LISP -- perhaps before you
load tke rule-testing system). The result of the above TERMN
command is to make "{" the character delete iustead of "“av,
* " the line delete instead of "[", and to turn the logical
line end and escape character facilities off.

11.1.3 Prompts and Breaks

VM/370 handles all terminal traffic (network or telerhone)
in half-duplex mode. Therefore, input should not be entered
unless it is expected by the monitor. when input 1is
expected, a prompt character is output. The default prompt
is a bell. 1If desired, the prompt may he changed by giving
the monitor (not LISP) the command

TERM BREAD ¢




24 January 1975 Systea Development Corporation
=34~ TM-5478,/000/00

vhere ¢ is a non-numeric character. After this command, c
will be output instead of a bell whenever input is expected.

If there is input vhen not expected, or the break key
(attention button on 2741 terminals) is depressed at any
time, then the amonitor is entered. AT this point, "iv js
output and one of four actions may be taken: (1) input a
carriage return (progras execution will resume); (2) enter
HT (terminal output will cease until the next terminal input
request 1is issued); (3) enter RT (cancels the last HT
command and resumes terminal output); and (4) enter HYX
(execution of the currently loaded proqram is permanently
discontinued after output of any stacked terminal lines).
If instead of one break, two are input in reasonably rapid
succession, then CP 1is output and you are in a position to
interact with the CP monitor component. To resume execution
of the loaded program, input "BEGIN",

11.1.4

Terminal lines input to LISP that begin with "/" have a
special interpretation. If the first two characters are
“//%, then the CMS subset mode 1is entered. Any CP or CMS
subset commands may be ianput and executed. To return
control to LISP, input the coammand "RETURN".

If the first character of an input tecrminal line is "/*" and
the second character is not, the the entire line except for
the first character 1is passed through to CP for execution.
For instance, to send a message to the terminal of the user
with account name JOHN, input

/M JOHN messaqe text

to LISP. If you are talking directly to the monitor, the
command is entered without the "/". Note, the above usage
of "/" to comaunicate with the monitor can contlict with the
delimitation of the nucleus portion of a rule definition.
For the latter use, make sure it is not the first character
input on a terminal line -- if ne-essary, type a blank
first.

11.1.5 LISP Return apd logging Qut

To return from LISP (and the rule testing system), enter the
command

RCHMS;

This returns you to the state that you were in before




v

24 January 1975 System Developmeni Corporation
-35- TM-5478/000,00

loading the systen. The wmonitor command to log out of
V8/370 entirely is

LOG

Before returning to the system, it may be desired to save
the current work. This can most easily te accomplished
using the output commands -- see section 8. Another method
is available that saves the entire module, currently in
operation, on disk. Assume that it is desired - save the
module as MYTESTER;* then input the command

SAVE ("MYTESTER) ;

The module is written to disk and may later be reloaded by
the monitor command

MYTESTER

Any identifier of eight or fewer characters that does not
contain any special characters may be used as the module
save name instead of MYTESTER. The save command is an
example of an ordinary LISP expression that is not part of
the rule testing lanquage. The quote mark used in the save
command irforms LISP that the name is an identifier datun
and not a variable nanme.

A module save takes more than 300,000 bytes of disk.
Therefore, it should not be used promiscuously.

11.1.0 Errors and_Sarnings

Besides syntax errors, other anomalies may be detected by
the compiler and run time surport package. 1f a
rule-applying subr definition that contains references to
undefined or deleted rules is compiled, a warning aiagnostic
is issued -- the subr is still compiled, If a subr
containing such a reference is executed, an error message is
output and an error state is entered.

Entry to an error state (usually following an execution time
infraction) is announced by the output of a message that
characterizes the offense and the question

PRINT UNWRAP Y/N/LD?

¢ GENMOD is used and will save the file as (MYTESTER MODULE
Al .

" t—




24 January 1975 System Development Corporation
-36- TH-5478/000/00

As a naive LISP user, just enter N or NO and control will
return to command input.S

11.1.7 Network Usage

The TIBN 370 Model 145 at System Development Corporation is
connected to the ARPA netvwork as Host 8 and is known as
SDC-LAB. Connection from a Terminal Interface Processor
(TIP) necessitates usage of the two commands

AT O L
21 8

If the connection 1s succesfully opened, the herald "VM/370
CNLIMNE"™ 1s output along with a fprompt. (The default crompt
character for network users 1is a dot.) A login command
should now be given. To send a break through a TIP, use the
command

2SS 8

'he treak is not acted upon until any stacked terminal lines
have been printed -- therfore, be patient. As may be seen
from the above TIP commands, "3" has special significance.
In order to send "a" through, it is necessary to tygpe "aa",
An alternate methcd is to define another character as "a" to
VM. For instance, the command

SET INPUT Y} 7C

causes the input of "}" to be translated to the EBCDIC
character code 7C, which is the internal representation of
"a", Output is not affected.

The rormal loqout command "LOG" automatically closes the
network connection. If you drop the connection by any other
met hod, the jot 1is put in a disconnected state and after a
respectable lenqth of time is forced off the machine. It is
urged that whenever possible, the "LOGY" command bhe used so
4S to not tie up resources.

For network ccmnnection procedures from other than a TIP,
consult the TELNET docuezntation for your local host,

S A Y or YES response outputs a stack bkacktrace bhefore
returning to ccemand state. A D response enters a special
debug supervisor that evaluates LISP S-expressions. To exit
debug state, use the word EXIT.




M—— e L e

: 24 January 1975 System Development Corporation
-37- TN-5478,000/00

11.2 COMPILER FLAGS
Three flags (LISP variables) are available to control to
some extent the amount of editing text saved and the amount
of compiler output. The flag RFLG:65 determines whether
symbolic definitions of rules are saved for use by later
recompile and output commands. Initially, the flag 1is on.
To turn it off, enater
RPLG:65=NTL;
The flag SPLG:65 determines whether symbolic definitions of
rule-applying subrs are saved for later recompile and output
1 commands. 1Initially, the flaqg is on. To turn it off, enter
SPLG:65=NIL;
The flags may be turned back on by the commands

f RFLG:65=T;
SPLG:65=T;

. The flag TFLG:65 determines whether the compiler prints
results of the compilation of rules and rule-applying subrs.
Initially, the flaq is off. To turn it on, enter
TFLG:65=T;

E To turn it off again, enter

] TPLG:65=NTL;

I1f the flag 1is on, then the original 1input and the
transformations produced hy each pass of the compiler are
outout,

11.3 ARPABET SPELLING PACKAGE
Internally, ALEPAbet spellings are aaintained as 1integer

arrays with each rhcne represented by a four byte (32-bit)
integer. The information in each byte is

byte 0 - kind, vcicing, and stress level
, byte 1 - conscnant class
byte 2 - consonant place of articulation
hyte 3 - E-bit representation of phone's name

The redundancy in the representation is used for a speed
advantagqe by the rules.

A spelling is built wusing the functions CHETKSPELL and

e i s ini s e

T T —— ——_—



24 January 1975 Systea Development Corporation
-38- T™M-5478,/000/00

MAKESPELL. CHECKSPELL has one arqument, a 1list of phone
names, ":", and integers. If the list is legal -- e.g., all
list items are phone names, ":" only follows full vowel
names, inteqers only follow ":", and all integers aa-e 0, 1,
or 2 -- then CHECKSPELL returns the list in a "normal" form
with exterior word boundaries appended. If the list is not
leqal, error messages are output, and NIL is returned. The
function MAKESPELL takes as an arqument a normal form value
of CHECKSPELL and converts the representation to an integer
array.

The spellinas of forms associated with a word may be
retrieved using the macro SPELL. For example,

SPELL ("TOTALL)
returns a list of the forms of the word TOTAL. Each form is
an integer array. Given an integer array spelling, the
(identifier) name of the Ith phone is retrieved by

GETYAME(s,I)

where s 1is the array. Assuming that the Tth phone 1is a
vowel, 1ts stress level (an integer) is retrieved by

GETSTRESS(s,I)

The macros NCCDE, PCODE, and FCODE are available to examine
the structure of an integer phone representation. The

arqunent to NCODE is a rhone name -- the value is the
phone's 8-bit name code. The arqument to PCODE 1is a phone
name -- the value is the 32-bit integer representation of

that phone (sans stress level). The arqument to FCODE is a
feature name (STRESS0, STRESS1, and STRESS2 for stress
levels, and STERESS for the entire STRESS field) -- the value
is a 1list of two 1integers: (1) the byte in which
information for that feature is maintained (0, 1, 2, or 3),
and {?) a bit-mask that may Le used for extracting all
relevent teature informaticn from the selected byte.

The array CZ2PHARY has 256 elements, each element
correspouding to an 8-bit phone code. If p is the name of a
phone, then the expression

C2PHARY[ PCODE("p)+1] EQ "p

is always true.

The function PRNSPL has one arqument, an integer spelling
array. It prints the spelling in a compressed form; i.e.,
no blanks or ":" are outpat. It also prints (on the same
line if possible) the elements in the list RULES. The value




24 January 1975 System Development Corporation
-39~ TM-5478/000/00

of RULES wusually is the set of rules that have performed
transformations to produce this spelling. Another function,
PRNMAP, Lehaves similarly to PRNSPL. PRNMAP has no
arquments. The array printed is the value of the variable
SPELLARY and the number of phones output 1is equal to the
value of the variable SPELLEN.

Caution should be exercised when using the above functions
and macros. They do 1little error checking and can, if
misused, lead to unrecoverable errors. All are nanme
protected through the section rechanisnm, The names
CHECKSPELL, MARESPELL, SPELL, GETNAME, GETSTRESS, NCODE,
PCODE, and FCODE are in section 1; C2PHARY is in section 65;
and PRNSPL and PRNMAP are in section 66. Thus, for example,
it is necessary to enter NCODE:1 rather than Jjust NCODE.
See the next section for full names of the variables
SPELLARY, SPELLEN, and RULES.

1.4 EXECUTION SUPPORT PACKAGE

This section briefly describes the necessary protocol to use
rules and rule-applying subrs other than through
rule-testing commands. The original intended usage of the
system was in this mode as a dynamic component of a speech
understanding system -- see [2] and rsi.

The LISP sectioning mechanism has been used to minimize name
conflicts of systen components and to aid program
organization. The sections used by the phonological rules
system are:

1 general utility functions

65 rule, subr, and command compiler internal
66 execution support package

67 ordered rule subrs

68 unordered and nondeterministic rule subrs
69 rule functions

113 compiler command handlers

Section 1 is used by other components of the speech
understanding system, and section 113 is used by nmost
lanquage extention facilities in LISP. Unless specifically
stated to the contrary, all support functions and variables
discussed belov are in section 66.

Internal Array_ Handling

When rules are applied, they Bay wmatch some part of the
input string (an integer array) and cransform it. Por
unordered and nondeterministic rule application, it 1is




24 January 1975 System Development Corporation
-40- TM-5478/C00/00

imperative that the original string not be damaged.
Therefore, new arrays must be allocated to hold the
transformed spellings. Because this happens frequently and
can cause time consuming gqarbage collects, an "erasure"
scheme has been adopted. To allocate an array, use

CREATEARY ()

The value 1is an array into which spellings may be copied.
To return the array A to a pool for later use, use

ERASEARY (R)

The pool of available arrays is maintained on the 1list
ERASEL. The length of arrays allocated by CREATEARY is
equal to the value of the variable ARRAYLEN. The initial
value of ARRAYLEN is 50. To change this value to X, execute

[ ERASEL=NIL, ARRAYLEN=x1];

This will ensure that the pool of arrays of the 0ld length
is discarded. Note that the size of these arrays should be
a little longer than the 1longest spelling you will ever
derive,®

Spellirg arrays that hold lexicon forms are of t.ue exact
length of the spelling (in phones, including initial and
final word boundaries). The function COPA may be used to
copy a spelling array of an exact length to an array
allocated by CREATEARY. If the value of the variable CFLG
is NIL, then a copy is not made and the argument is
rteturned. Othervise, an array is created and the arqument
is copied into it. The initial value of CFLG is T

Because the system normally operates with arrays that are
longer than the actual speliings, it is necessary to
commrunicate the actval lengths. As rules and rule-applying
subrs are operated, they attempt to make the value of the
variable SPELLEN the actual number of phones and the value
of the variable SPFILARY the array containiug the spelling.
The variable SPELLINY normally is the index of the phone
that starts the currentl’y visible input substring, and the
variable NEXTARY is am array in which a rule may perform the
reconstruction dictated by its left side.

6 Be generous -- the penalty for exceeding this bound may be
an unrecoverable proqram check.




P hd

24 January 1975 System Development Corporation

-41- TM-5478,000/00
1.4.2 Rule_Calling Sequence

A rule is compiled as a function with the rule name in
section 69 as the function nanme. When a rule is called, it
is expected that the phonetic input string be in the array
that is the value of the variable SPELLARY and that the
value of the variable SPELLINX ke the index of the phone
that starts the currently visible substving. If the rule
does not match the substring, then NIL iz returned as the
value. TIf the rule matches, then several conditions prevail
wvhen the rule function returns: (1) the value of the
function (in register AC) is the lenqth (a small integer) of
the reconstruction sequence generated by the rule's left
side, (2) the identifier mname of the rule is in register
ACO, (3) the system entries BMRK and EMRK are set to the
absolute lccations of the beginning and just beyond the end
of the part of SPELLARY matched by the rule's nucleus, and
(4) the system entry CHANGES contains the reconstruction
sequence generated by the rule's left side. If the rule
function returns non-NIL, then the derived spelling 1is
generated by calling the proper reconstruction function.
The reconstructor used depends upon whether the rule
application is crdered, unordered, or nondeterministic. For
ordered rule application, use a code seguence like

(ARGS) (CALL rule) (BZM AC (LABEL L)) (ARGS) (CALL RECO) L
for unordered rule aprlication,

(ARGS) (CALL rule) (BZM AC (LABEL L)) (ARGS) (CALL RECU) L
and for nondeterministic rule application,

(ARGS) (CALL rule) (BZM AC (LABEBL L)) (ARGS) (CALL RECN) L

where rule is the rule name in section 69 -- for instance
(FLAP . 69). The reconstruction functions RECO, RECU, and
RECN each behave a little differently to be compatible with
the different kinds of rule applying subrs. Each 1is
described lhelow.

11.4.3 Ordered Subrs

An ordered rule-arplying subr is compiled as a two-arquuent
function. The name of the function is the subr name in
section 67. The arquments are the input spelling and the
length of the spelling. The input spelling is copied by
COPA (if the value of CPFLG is non NIL). The value of the
variahle SPELLARY is set to the input spelling, and the
value of the variable SPELLEN is set to the spelling's
lenqgth. Then the subr parts are execnted, left to right




R T Emmm v

24 January 1975 System Development Corporatior
-42- THN-5478/000/00

across the input, one at a time. 1If a rule in a subr part
matches the 1input substring, then RECO 1is called
immediately. RECO performs several functions: (1) sets the
value of the variable RULENAME to the name of the rule
matched, (2) nmakes the changes in SPELLARY, (3) sets SPELLEN
to the new spelling length (4) adds the name of the rule
(value of RULENAME) to the list RULES, and (5 «calls the
value of the functional variable MAPPER. 1In rule testing
mode, the value o©of MAPPER is the function PRNMAP. The
variable SPELLINX is the index of the substring matched by
the rule. Its value is available when the value of MAPPER
is call. ..

Several points should be noted when any program other than
the rule testing system is directly calling an ordered
rnle-applying subr: (1, it is the <caller's duty to bind or
s2t CPLG to the proper value, (2) RULES should be re-bound
so that it will reflecc only the rules that have operated on
this spelling, and (3) if desired and appropriate, call
ERASEARY with the value of SPELLARY at the coampletion of
execution.

11. 4.4 Unordered_Subrs

An unordered rule-applying subr is compiled as a
three-arqument function. The function name is the subr name
in section 68. The arquments are the spelling array (input
string), the number one, and the spelling's length. (The
second arqument is actually used as he substring start
location. However, unordered subrs are called recursively
and must be initially "primed™ with a one.) Unordered subrs
re-bind numerous gqlobal variatles: SPELLARY, SPELLINX,
SPELLEN, NEXTARY, RULES, SPELLFN, and RULENAME. When the
subr 1is entered, it immediately calls the value of the
functional variable MAPPER (set to PRNMAP in rule testing
mode). The values of SPELLARY, SPELLINX, SPELLEN, and RULES
are proper and reflect facts about the spelling in SPETLARY.
The functional variable SPELLPN is bound to the subr itself
so that RECU can make proper recursive calls. The value of
NEXTARY 1s initialized to an array (by CREATEARY) on each
subr entry, and is released (by ERASEARY) on subr exit. The
array is used by RECU.

RECU 1is the reconstruction function wused Lty wunordered
rule-applving subrs. The name of the rule that just matched
is stuffed into the variable RULENAME. Then the new
spelling 1is constructed in NEXTARY without modifying the
value of SPELLARY. Next, the value of SPELLFN (the subr) is
called recursively with the three arquments NEXTARY,
SPELLINY, and the length of the new spelling that is in
NEXTARY.

R T TR Bl & o WL WU

T W




T e e

e

{ 24 Januvary 1975 System Development Corporation
-43- THM-5478/000,/00

n

When an unordeicd rule is called, it is not necessacy to
copy a spelling of exact length into a longer array -- the
oriqinal spelling array is not altered. Before the subr is
called, the value of RULENAME should be bound to some
meaningful value, say the word whose spelling is being
operated upon., The reason is that the value of RULENAME is
added to RULES by the initial subr cell 1s if it were a rule

name.
¢
{ 11.4.5 Nondeterministic Sutrs
; 1 A nondeterministic rule-applying subr is compiled as a

three-arqument function. The function name is the subr name

in section 68. The first arqument is the input string (as
/ an integer array), and the third arqument is the length of
the input string. The second arqument is irrelevant. (This
makes calling sequences reasonably compatible with unordered
rule-applying subr functions.) The subr binds several
special variables: SPELLARY, SPELLINX, SPEL.EN, NEXTARY,
TRYSET, and DONESET. The value of SPELLINX cannot be relied
upon in nondeterministic subrs. The value of NEXTARY is
initialized to an array by CREATEARY. All arrays created %n
a nondeterministic subr are erased (by FRASEARY) he.rre
exit. Each time a rule matches the input substring, RFCN is
o called. The functions performed Lty RECN are: (1) stuff the
value of RULENAME with the name of the rule that matched,
(2) put the derived spelling in NEXTARY, (3) add to TRYSET?
a list of the lenqth of the derived spelling, NEXTARY, and
the name of the rules that have rparticipated in deriving
this spelling, and (4) set the value of NEXTARY t< another
array (using CREATEARY).

Eventually, each array on TRYSET (including the original
input array) becomes the value of SPELLARY, the 1length of
the array is se* in SPELLEN, and RULES is set to the list of
rules that have participated in deriving this spelling. The
value of che .unctional variable MAPPER is then called. 1In
rule testiny mode, the value of MAPPER is the function
PRNMAP. As with unordered subrs, the value of RULENAME
should be tound to scme meaningful value before the subr is
called. The initial value of RULENAME is added to RULES as
if it were a rule name.

7 Step three is bvypassed if the same spelling has already
been genetated.

Tt ¢ M in. i TR S e B e o e b



24 January 1975 System Development Corporation
-44- TN-5478/000/00

BIBLIOGRAPHY

[11 - MINFIX LISP FOR SDC IBM 370 USERS", J.A. Barnett,
™-4310/600/00, 5/24/73.

21 - "A PHONOLOGICAL ROLES COMPILERY, J.A. Barnett,
Proceedings of the IFEE Symposium on Speech Recognition,
4/74, pp. 188-192.

[ 31 - “IBM VIRTUAL MACHINE FACILITY/370: COMMAND LANGUAGE
GUIDE FOR GENEFAL USERS", Order Numker GC20-1804-n.

[47 - "CURRENT NETWORK PROTOCOLS", Includes BBN Report 1822.
ST - "A VOICE-CONTROLLED DATA MANAGEMENT SYSTEM", H.B.

Ritea, Proceedings of the IEEE Symposium on Speech
Recoqnition, 4/74, pp. 28-31.




24 January 1975 Systea Development Corporation
-45- TM-5478/000/00

APPENDIX 1: COMMAND SYNTAX

The following summarizes the syntax of the commands in the
rule system. The description is standard BNF with the usual
augmentation; namely, the use of %X means that the following
term must occur at least once and may occur multiple times.
A form like %'x' means that the following term must occur at
least once or may occur multiple times separated by x's.
For exanple, %'-'A means A, A-A, A-A-A, etc. Square
brackets, [ and ], mean that the occurrence of the enclosed
term is optional. { and } are used as meta parertheses,
The occurrence of | between terms means alteration i.e., a
choice of the terms.

The syntax of a rule definition is

<rule>::=% <r-name> <left-side>=<right-side>[<conditional>];

<r-naame>::=<identifier>
left-side>::=NIL|%','<left-part>
<left-part>::=<consonant-name>|<toundary-named|
<reduced-name>|<left-vovel)>|
<index>|<constructed-consonant>
<lef t-vowel>::=<vowel-designator>[ <stress-designator>)
{vowel-designator>::=<full-vowel-name>|<index>
<index>::=<integer>
{stress-designator>::=<explicit-stress> |<borrow>
<explicit-stress>»::= :<stress>
<stress>::=011)2]|
<borrow>::=d<index>
<{constructed-consonaat>::=(<class-designator>
<place-designator>
<voice-designator>)

<class-desiqnator>::=<class-name>)CLASS<torrow>

<place-desiqnator>::=<place-name>| PLACE<borrow>




24 January 1975 System Development Corporation
-46- TH-5478/000,/00

<voice-designator>::={ - JVOICE[ <borrowd>])
<right-side>::=<nucleus>|
[ <left-context> /[ <nucleus>)/
[ <riqht-context> ]
<nucleus>::=%','<riqht-part>
<right-context>::=%','<riqht-part>
<left-context>::=%','<right-part>
<right-part)>::=<repeat>|<optional>|<choice>
<repeat>: :=REP <min-count> <choiced>
<min-count>::=<{integer>
<optional>::=0PT <choice>
<choice>::=%'0R'<pat-part>
<pat-part>::=<{consonant-name>|<boundary-name>}<reduced-name>|
<full-vowel-name>[<explicit-stress>]|
<class-name>]<place-name>|<kind-name>|
VCICE|VOWELCexplicit-stress>|<feature-bundled>]
+<pat-part>|-<pat-part>

<feature-bundled>::=(%¥<choice>)

<conditional>:: =IF <cond-body>

<cond-body>::=%'0R' <cond-and>

<cond-and>::=%'AND' <relation>

<relation>::=<kind-test>]<class-test>|<{place-test>|
<{stress-test>}|<name-test>|<voice-testd>]

(<cond-body>)

<kind-test>::=KIND<borrow> {EQ|NQ}
fKIND<borrow>|<kind-name)>)

<class-test>::=CLASS<borrow> (RQ] NQ}
{CLASS<borrow>|<class-naned>}

<place-test>::=PLACE<borrow> {EQ|NQ}
{PLACE<borrow|<place-naned>}

<stress-test>::=STRESS<borrow> fEQ] NQJGQ] LQ|GR] LS}
{STRESS<borrow> |<stress>;

~av




28 January 1975 System Development Corporation
-47- TM-5478,000/00

<name-test>::=NAME<borrow> (EQ]N(Q}
{NAME(borrov)|<boundary—nane>|<consonant—name>|
<reduced-name>|<full-vowel-name>)

<voice-test>::=[ - VOICE<borrow>|]
VOICE<borrow> {EQ|NQ} VOICE<Lborrow>

<consonant—nane>::=L|H|YlRlHXlN]HlG]BIDIP]TIK|ZH|Z|DH|V|
SHIS|TH|P}JH|CH) QIDX] WH| HH

<boundary-named>::=%| ¢
<reduced-name>::=AX

<fu11—vove1-nane>::=IY|IH|BY|EB|AE|AA|AH|AO|0H|UH|UH|
ERJAW]AY) OY

<class-name>::=AFRIC|FRIC} PLOS] NASAL|GL IDE|
LATERAL | CENTRAL

(Dlace—name)::=LAEIALIALVEOLARIALVPALIDENTAL|
VELAR |PALATAL

<kind-name>::=BCUNCARY| CONST] VOWEL

The syntax of a subr definition is

<subr>::={<unordeted-subr>|<ncndeterminis€ic—subr>|
<ordered-subr>};

<unordered-subr>::=SUBR UNORDERED <s-name)
%','<r-named>

<nondeterministic-subr>::=SUBR NODETERM <s-name>
£','<r-nane>

<ordered-subr>::=SUBR { ORDERED] <s-name> X ,'<subr-part>
<{s-name>: :=<identifier>

<subr—part>:r=<r—nale>|<allo£>|<oneof>|<if>|<un1ess>|
{<subr-part>)

<allof>::=ALLOF (%', '<subr-partd)
<oneof>::=0NEOF (%', '<subr-part>)
<if>::=IF <subr-part> THEN <subr-part> [ ELSE <sukr-part>)

<unless>: :=0NLESS <subr-part> THEN <{subr-part>




e il e e

N T T U SR M T T

24 January 1975 System Developament Ccrporation
-48- T ¥-5478,/000/00

[ ELSE <subr-part>)

The syntix of a recompile command is
<recomp>: :=RECCMP [CLD] {SUBR <s-name)>|

RULE <r-name>]
SLEX <l-name>};

The syntax of a delete coamand is
<delete>::=DEL {<vord>]
SUBR <s-name>|

RULE <r-name>)
SLEX <l-name>};

The syntax of a sub lexicon definition command is
<sub-lexicon>::=SLEX <l-name> %', {<word>[ <form-index>}};
<woru>::=<identifier>

<form-index>::= :<inteqger>

The syntax of a lexicon entry definition command is
<lexicon>::=LEX {<lex-print>|<lex-aug>|<lex-def>} ;
<lex-print>::=<word> <form-index>]
<lex-aug>::=<wcrd>+¥%','<arpa-spelld>

<lex-def>::=<word><fora-index><arpa-spell)|
<word>a.','<arpa-spell>

<arpa-spell>::= (% {<consonant-named>|<boundary-name) |
<reduced-naame>|
<full-vovel-name>[<explicit-stress>]})




1

e e

24 January 1975 System Development Corporation
-49- TM-5478/000/00

The syntax of the execute commands is
<execute>::= {<run>|<joe>|<mary>};
<run>::=RUN <s-name> <run-obiject)>
<joe>::=JO0E <run-obiject>
<{mary>::=MARY <run-object>

<run-obiject>::=LEX f<l-name>}}<arpa-spelld|
<word>f <form-index> )}

The syntax of the output commands is
<outputd>::=f{<terminal>|<printer>|<disk>};
<terminal>::=TERMNINAL <out-sequenced>
<printer>::=PFINTEF <out-sequence)>

<disk>::=DISK f<f-name>|<fd1l>} <cut-segquenced>
<{f-name>::=<identified>
<out-sequence>::=%','<cut-spec>
out-spec>::=ALL|SUBRS|RULES|LEX]SLEXS)SUBR <s-name>j

RULE <r-name>)SLEX <l-named>|
RUN {<s-name>|JOE| MARY} {<l-named>| LEX}

The syntax of the query command is

<query>::=? {RULES|SUBRS]JLEX|SLEXS};

A e WE




24 January 1975 System Development Corporation

-50- TH-5478,/000,00
APPENDIX 2: PHONOLOGICAL SYMBOLS AND THEIR FEATURES
PHONE EXAMPLE FEATURES
IY beat VOWEL, stress, VOICE
18 bit VOWEL, stress, VOICE
BY bait VOWEL, stress, VOICE
EH bet VOWEL, stress, VOICE
AE bat VOWEL, stress, VOICE
AA tob VOWEL, stress, VOICE
AH but VOWEL, stress, VQICE
AO bought VOWEL, stress, VGICE
oW toat VOWEL, stress, VCICE
UH book VOWEL, stress, VCICE
UW boot VOWEL, stress, VCICE
AX about VOWEL, :0, VOICE
ER bird VOWEL, stress, VOCICE
AW down VOWEL, stress, VCICE
AY tuy VOWEL, stress, VOICE
oY boy VOWEL, stress, VOICE
Y you CCNST, GLIDE, PALATAI, VOICE
| W wit CONST, GLIDE, LABIAL, VCICE
R cent CONST, CENTRAL, AIVECLAR, VOICE .
I let CONST, LATERAL, ALVECLAR, VOICE
M met CONST, NASAL, LABIAL, VCICE
N net CONST, NASAL, ALVEOLAR, VOICE
NX sing CONST, NASAL, VELAR, VOICE
P pet CONST, PLOS, LABIAL
iy ten CONST, PLOS, ALVECLAR .
K kit CCNST, PLOS, VELAR
B bet CONST, PLOS, LABIAL, VOICE
D debt CCNST, PLOS, ALVEOLAR, VOICE

G get CONST, PLOS, VLLAR, VOICE
EH hat CON3ST, MISC
F fat CONST, FRIC, LARIAL
TH thing CCNST, FRIC, DENTAL
5 sat CONST, FRIC, ALVEOLAR
SH shut CONST, FRIC, ALVPAL
v vat CONST, FRIC, LABIAL, VOICE
DH that CONST, PRIC, DENTAL, VOICE
Z zoao CONST, FRIC, ALVECLAR, VOICE
2H azure CCNST, FRIC, ALVPAL, VOICE
CH church CCNST, AFRIC, ALVPAL
) JH jud3ge CCNST, AFRIC, ALVPAL, VOICE d
] WH which CCNST, MISC, LABIAL
- DX batter CONST, MISC, ALVEOLAR, VOICE
0 aqglottal
stop CONST, MISC, VOICE
* syllable BOUNDARY
| word DBCUNLARY
stress = :0, :1, or :2




